

Perfil Ambiental do Artigo (PEP)

Línea de producto (nombre

técnico):

RV-K 1.5&2.5mm²

Línea de producto (nome da marca):

RET-FLEX/RETFOC®/RV-K

Producto de referencia:

RET-FLEX 3G2.5mm²

2,3E+03

kg CO₂ eq. Aquecimento global

6,8E-02

kg Sb eq. Esgotamento de recursos abióticos (elementos)

Uso líquido de água doce

Uso total de energia primária

PEP ecopasspo	r+ NI°.	NXNS-00088-V01.01-PT	Regras de Categoria de Artigo:	PEP-PCR-ed3-EN-2015 04 02
TET ecopusspe	IIIN .	14/143-00000-401.01-11	Regras Específicas do Artigo:	PSR-0001-ed3-EN-2015 10 16
N° de certifica verificador:	ção do	VH18	Informações e documentos do programa:	www.pep-ecopassport.org
Data de public	ação:	11-2021	Período de Validade:	5 anos

Verificação independente da declaração e dados, segundo a ISO 14025: 2010

Interno Externo 🗷

A revisão crítica de PCR foi conduzida por um painel de especialistas liderado por Philippe Osset (Solinnen).

PEP são compatíveis com XP C08-100-1: 2016

Os elementos do presente PEP não podem ser comparados com elementos de outro programa.

Segundo a ISO 14025: 2010 "Rótulos e declarações ambientais - declarações ambientais Tipo III".

S. PASQUELIN/M. VEAUX Realizado por:

101 Route d'Arnay - 71400 Autun - France

https://www.nexans.com/csr.html

Compromiso de responsabilidad social corporativa de Nexans

La Responsabilidad Social Corporativa, en la confluencia de aspectos ambientales, económicos y sociales, es una parte integral de la estrategia de Nexans. Nexans ha apoyado el Pacto Mundial de las Naciones Unidas desde diciembre de 2008 y ha implementado planes de acción internos para integrar el Desarrollo Sostenible en todos los niveles. Incluye una gobernanza responsable, un entorno de trabajo saludable y seguro para los empleados, una huella de carbono global reducida gracias a la estrategia de neutralidad de carbono de Nexans.

Descrição do artigo de referência

RET-FLEX 3G2.5mm²

Esses cabos classe 5 podem ser fixados em bandejas de cabos, dentro de conduítes ou fixados em paredes. Eles também podem ser enterrados diretamente com proteção mecânica extra.

Artigos cobertos:

Os artigos referidos pertencem à categoria Fios, Cabos e Acessórios das Regras da Categoria de Produto (PCR) do programa PEP ecopassport®.

O PEP refere-se a todos os artigos da gama RV-K 1.5&2.5mm² e o artigo de referência do PEP é o artigo RET-FLEX 3G2.5mm².

Unidade funcional:

Transmitir la energía expresada para 1A a una distancia de 1km durante 30 años, así como una tasa de uso del 70% conforme a las normas vigentes, que se detallan en la ficha técnica de nuestro sitio web (www.nexans.com).

La vida útil y la tasa de uso se corresponden con la aplicación Edificio-Residencial / terciario / industrial según se define en la tabla que figura en el apéndice 1 de las reglas específicas para alambres, cables y accesorios.

Este PEP foi elaborado tendo em conta os seguintes parâmetros:

- 1km para as etapas de produção, distribuição e final de vida
- 1km e 1A para a etapa de utilização

O impacto potencial do estado de utilização deve ser calculado pelo utilizador do PEP tendo em conta a amperagem real através do artigo durante a sua utilização, multiplicando o impacto pelo quadrado da intensidade. Este PEP é válido na faixa de intensidade tendo em conta a intensidade máxima permitida.

Materiais constituintes

O peso total do artigo de referência e embalagem é de 141,71 kg/km. Os materiais constituintes são distribuídos da seguinte forma:

A Nexans implementou os procedimentos necessários para garantir a conformidade do artigo com os padrões relevantes quando os artigos são colocados no mercado.

II. AVALIAÇÃO DO CICLO DE VIDA

Produção

- Todos os artigos da gama RV-K 1.5&2.5mm² são fabricados em França.
- O modelo de mistura de eletricidade para a etapa de produção é França, >1 kV.
- Todas as unidades da Nexans na França implementaram um Sistema de Gestão Ambiental certificado segundo a norma ISO14001.

Embalagem concebida para reduzir o impacto ambiental:

- A embalagem foi concebida segundo a norma aplicável (Diretiva 94/62/CE).
- A embalagem considerada para transporte do artigo de referência é uma Bobina de madeira. Somente para 1 utilização.
- A embalagem considerada é um bobina de madeira com certificação PEFC™ (Program for the Endorsement of Forest Certification), para garantir o abastecimento responsável e a gestão florestal sustentável.

Distribuição

O cenário de transporte para a avaliação de impacto da etapa de distribuição é intracontinental, tendo em conta:

3500 km percorridos por caminhão.

Instalação

Os processos de instalação do artigo de referência são considerados fora do âmbito do estudo, segundo o documento de Regras Específicas do Artigo para "Fios, Cabos e Acessórios" do programa PEP ecopassport®. Somente a eliminação de embalagens é considerada nesta etapa.

Utilização

O cenário de utilização tem em conta o funcionamento do artigo de referência em Construção - Residencial / Terciário / Industrial, com:

- Vida útil de referência (VUR) = 30 anos
- Intensidade atual(A): 1
- Número de condutor(es) ativo(s): 3

- Taxa de utilização = 70 %
- Resistência do cabo*(ohm/km): 7.98

(*Segundo a norma IEC 60228)

Tendo em conta as hipóteses acima, o consumo de energia no (TVR) no estado de utilização é de 4404 kWh/km.

Este valor é calculado para I=1 A. Para o consumo efetivo do cabo instalado, multiplique o valor dado pela intensidade quadrada.

- A mistura de eletricidade tida em conta no estado de utilização é a Espanha, ≤1 kV.
- Não é necessária qualquer manutenção para garantir o funcionamento do cabo durante a vida útil de referência considerada.

A vida útil de referência mencionada neste PEP corresponde a um dado médio utilizado para cálculo de impacto, tendo em conta o tempo médio que um cabo pode ficar instalado num sistema antes de ser eliminado. NÃO PODE SER considerado equivalente à vida técnica garantida do artigo.

Fim de vida

- O cenário de transporte escolhido para a análise de impacto associado ao estado de fim de vida é de 1000 km percorridos por camião.
- O modelo de mistura de eletricidade assumido para o estado de fim de vida é a Espanha, >1 kV.

Os cabos são reciclados através de um processo de correção para separação de polímeros e peças metálicas. Foi considerado que 100% dos metais são reciclados e 100% dos restantes materiais para aterro.

A Nexans possui know-how na recuperação de cabos no final de sua vida útil através de sua estrutura dedicada "Nexans Recycling Services" (recicl.services@nexans.com), para oferecer uma solução completa para reciclagem de polímeros e metais.

III. IMPACTO AMBIENTAL

O produto de referência RET-FLEX 3G2.5mm² pertence às regras da categoria de produto (PEP-PCR-ed3-EN-2015 04 02) e regras específicas do produto (PSR-0001-ed3-EN-2015 10 16) do programa PEP ecopassport®. Segundo as Regras de Categoria de Artigo (PCR), a avaliação do impacto do ciclo de vida do artigo de referência tem em conta as etapas de produção, distribuição, instalação, utilização e fim de vida.

Todas as hipóteses necessárias para avaliar o impacto ambiental do ciclo de vida do artigo de referência são apresentadas nas partes anteriores (modelos de mistura de eletricidade, cenário de utilização, etc.).

O software utilizado para realizar a avaliação é o EIME 5.9.1, com base de dados Nexans-2021-02.

Representatividade: o estudo é representativo da produção de cabos na França com um cenário intracontinental de Distribuição. O modelo de eletricidade a ser usado é a Espanha, ≤1 kV e o modelo para o fim da vida é a Espanha, >1 kV.

Resultados de impacto para 1000 m de cabo RET-FLEX 3G2.5mm²

Indicadores obrigatórios:

maleadores obrigatorios.							
Indicadores Ambientais/ Fluxos	Unidade	Produção	Distribuição	Instalação*	Utilização	Fim de vida	TOTAL
					(para 1 A)		(para 1 A)
Aquecimento global	kg CO ₂ eq.	2,94E+02	2,47E+01	4,41E-01	1,98E+03	2,23E+01	2,32E+03
Destruição da camada de ozono	kg CFC-11 eq.	4,62E-05	5,00E-08	3,96E-09	6,71E-05	3,25E-06	1,17E-04
Acidificação de solos e água	kg SO ₂ eq.	1,25E+00	1,11E-01	2,11E-03	9,72E+00	1,32E-01	1,12E+01
Eutrofização da água	kg PO ₄ ³⁻ eq.	1,73E-01	2,55E-02	2,28E-03	6,08E-01	3,94E-02	8,49E-01
Formação fotoquímica da camada de ozono	kg C₂H₄ eq.	9,01E-02	7,88E-03	1,50E-04	5,78E-01	7,38E-03	6,83E-01
Esgotamento de recursos abióticos (elementos)	kg Sb eq.	6,81E-02	9,88E-07	2,02E-08	1,45E-04	1,12E-06	6,82E-02
Uso total de energia primária	MJ	5,68E+03	3,49E+02	5,92E+00	4,19E+04	3,77E+02	4,83E+04
Uso líquido de água doce	m ³	3,16E+02	2,21E-03	1,67E-04	7,16E+02	3,94E-02	1,03E+03

Indicadores opcionais:

Indicadores Ambientais/ Fluxos	Unidade	Produção	Distribuição	Instalação*	Utilização	Fim de vida	TOTAL
					(para 1 A)		(para 1 A)
Esgotamento de recursos abióticos (combustíveis fósseis)	MJ	3,64E+03	3,47E+02	5,71E+00	2,51E+04	2,43E+02	2,94E+04
Poluição da água	m ³	2,67E+04	4,06E+03	6,61E+01	4,69E+04	1,92E+03	7,97E+04
Poluição do ar	m ³	2,73E+05	1,01E+03	5,54E+01	6,74E+04	1,51E+03	3,43E+05
Utilização de energia primária renovável (exceto os recursos utilizados como matérias-primas)	WJ	3,11E+02	4,65E-01	7,53E-02	7,80E+03	2,01E+01	8,14E+03
Utilização de recursos renováveis de energia primária utilizados como matérias-primas	WJ	9,43E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,43E+01
Utilização total de recursos de energia primária renovável	WJ	4,06E+02	4,65E-01	7,53E-02	7,80E+03	2,01E+01	8,23E+03
Utilização de energia primária não renovável (exceto os recursos utilizados como matérias-primas)	WJ	3,33E+03	3,49E+02	5,84E+00	3,40E+04	3,57E+02	3,81E+04
Utilização de recursos de energia primária não renováveis utilizados como matérias-primas	WJ	1,94E+03	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,94E+03
Utilização total de recursos de energia primária não renováveis	MJ	5,28E+03	3,49E+02	5,84E+00	3,40E+04	3,57E+02	4,00E+04
Utilização de combustíveis secundários renováveis	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilização de combustíveis secundários não renováveis	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Utilização de materiais secundários	kg	9,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	9,00E+00
Resíduos perigosos eliminados	kg	6,28E+03	0,00E+00	1,65E-03	2,87E+00	2,97E-02	6,28E+03
Resíduos não perigosos eliminados	kg	4,21E+01	8,77E-01	6,93E+00	2,75E+03	1,36E+02	2,94E+03
Resíduos radioativos eliminados	kg	3,99E-01	6,25E-04	4,94E-05	3,68E+00	4,07E-02	4,12E+00
Componentes para reutilização	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Energia exportada	WJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materiais para recuperação de energia	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Materiais para reciclagem	kg	2,87E+00	0,00E+00	0,00E+00	0,00E+00	5,77E+01	6,06E+01

^{*}A etapa de instalação inclui apenas a eliminação da embalagem. Impacto relacionado com os processos de instalação podem ser concluídos pelo utilizador do PEP.

Informações gerais

As regras de extrapolação foram calculadas com base nos resultados da avaliação de impacto ambiental de 3 artigos da gama RV-K 1.5&2.5mm². O artigo de referência é o RET-FLEX 3G2.5mm².

O produto de referência tem 3 condutor(es) ativo(s) e uma resistividade de 7,98 ohm/km/condutor ativo.

As regras de extrapolação abaixo são aplicadas a 1000m de produto. Nas partes seguintes, o peso do artigo é apresentado em kg para kg para 1000m de cabo, caso se aplique.

Regras de extrapolação para cada estágio do ciclo de vida

	Estágio do ciclo de vida	Princípio de extrapolação aplicável	Fórmula para calcular cada indicador ambiental	Exemplo: se a massa do produto for 145 kg/km, cada indicador é calculado com:	O desvio médio da regra de extrapolação
5	Produção	Variação linear versus peso	Indicador = a x peso do cabo + b.	Indicador = 145 x a + b.	2,67%
	Distribuição	Variação linear versus peso	Indicador = a x peso do cabo + b	Indicador = 145 x a + b.	0,63%
Al	Instalação	Valor máximo de impacto	Os valores de impacto máximo indicados (MIV) na tabela abaixo são aplicáveis a toda a gama de impactos da fase de Instalação.	N/A	N/A
	Utilização	Variação versus razão de resistência	Indicador = (Resistência do artigo / Resistência do artigo de referência) x Valor do indicador para o artigo de referência x (Nb de condutores ativos / Nb de condutores ativos no artigo de referência)	Exemplo: Se a resistividade do produto é 1,2 ohm / km com 1 condutor ativo, Indicador = (1,2/7,98) x (1/3) x Valor do indicador do produto de referência.	0,00%
	Fim de vida	Variação linear versus peso	Indicador = a x peso do cabo + b	Indicador = 145 x a + b.	0,56%

Tabela a ser considerada para os cálculos de extrapolação das diferentes etapas do ciclo de vida:

		Prod	ução		Distri	ibuição	Insta	alação	Fim de vida		
'											
	а	b	а	b	a	b	MIV		a	b	
Aquecimento global	2,23E+00	-8,59E+00	N/A	N/A	1,81E-01	4,40E-01	7,24E-01	-	1,59E-01	1,00E+00	
Destruição da camada de ozono	5,00E-07	-2,00E-05	N/A	N/A	3,67E-10	8,92E-10	6,35E-09	-	2,38E-08	3,85E-08	
Acidificação de solos e água	1,03E-02	-1,50E-01	N/A	N/A	8,14E-04	1,98E-03	3,47E-03	-	9,50E-04	4,11E-03	
Eutrofização da água	1,45E-03	-2,50E-02	N/A	N/A	1,87E-04	4,54E-04	3,76E-03	-	2,20E-04	1,05E-02	
Formação fotoquímica da camada de ozono	7,36E-04	-1,01E-02	N/A	N/A	5,79E-05	1,40E-04	2,47E-04	-	5,25E-05	3,23E-04	
Esgotamento de recursos abióticos (elementos)	7,52E-04	-3,59E-02	N/A	N/A	7,25E-09	1,77E-08	3,30E-08	-	7,79E-09	7,60E-08	
Uso total de energia primária	4,64E+01	-4,74E+02	N/A	N/A	2,56E+00	6,22E+00	9,74E+00	-	2,73E+00	9,46E+00	
Uso líquido de água doce	2,95E+00	-5,66E+01	N/A	N/A	1,62E-05	3,93E-05	2,69E-04	-	2,82E-04	1,39E-03	
Esgotamento de recursos abióticos (combustíveis fósseis)	2,76E+01	-7,20E+01	N/A	N/A	2,55E+00	6,19E+00	9,40E+00	-	1,75E+00	7,60E+00	
Poluição da água	1,77E+02	2,84E+03	N/A	N/A	2,98E+01	7,24E+01	1,09E+02	-	1,36E+01	8,58E+01	
Poluição do ar	2,95E+03	-1,34E+05	N/A	N/A	7,43E+00	1,80E+01	9,10E+01	-	9,52E+00	2,45E+02	
Utilização de energia primária renovável (exceto os recursos utilizados como matérias-	3,20E+00	-1,27E+02	N/A	N/A	3,41E-03	8,29E-03	1,23E-01	-	1,45E-01	5,19E-01	
Utilização de recursos renováveis de energia primária utilizados como matérias-primas	5,70E-01	3,51E+01	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Utilização total de recursos de energia primária renovável	3,77E+00	-9,18E+01	N/A	N/A	3,41E-03	8,29E-03	1,23E-01	-	1,45E-01	5,19E-01	
Utilização de energia primária não renovável (exceto os recursos utilizados como matérias-	3,20E+01	-9,36E+02	N/A	N/A	2,56E+00	6,22E+00	9,62E+00	-	2,58E+00	8,95E+00	
Utilização de recursos de energia primária não renováveis utilizados como matérias-primas	1,06E+01	5,53E+02	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Utilização total de recursos de energia primária não renováveis	4,26E+01	-3,82E+02	N/A	N/A	2,56E+00	6,22E+00	9,62E+00	-	2,58E+00	8,95E+00	
Utilização de combustíveis secundários renováveis	0,00E+00	0,00E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Utilização de combustíveis secundários não renováveis	0,00E+00	0,00E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Utilização de materiais secundários	9,95E-02	-4,76E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Resíduos perigosos eliminados	6,93E+01	-3,30E+03	N/A	N/A	0,00E+00	0,00E+00	2,70E-03	-	1,50E-04	1,02E-02	
Resíduos não perigosos eliminados	4,24E-01	-1,17E+01	N/A	N/A	6,44E-03	1,56E-02	1,14E+01	-	7,83E-01	3,20E+01	
Resíduos radioativos eliminados	3,73E-03	-7,17E-02	N/A	N/A	4,59E-06	1,11E-05	7,92E-05	-	2,99E-04	4,80E-04	
Componentes para reutilização	0,00E+00	0,00E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Energia exportada	0,00E+00	0,00E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Materiais para recuperação de energia	0,00E+00	0,00E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	0,00E+00	0,00E+00	
Materiais para reciclagem	3,18E-02	-1,52E+00	N/A	N/A	0,00E+00	0,00E+00	0,00E+00	-	6,36E-01	-3,03E+01	

V. PRODUTOS COBERTOS PELO PEP

Os produtos abrangidos pelos dados PEP são representados na tabela abaixo por:

A tabela abaixo também fornece a resistência linear máxima (ohm/km) a 20°C em DC para os fios cobre - não estanhado de acordo com IEC 60228.

Seção (mm²)	Resistividade								1	√° de	CO	NDUT	ORES	5						
Seção (mm.)	(ohm/km)	1	2	3	4	5	6	7	8	9	10	12	14	19	21	24	27	30	37	40
0,5	39																			
0,75	26																			
1	19,5																			
1,5	13,3	•	•	•	•	•														
2,5	7,98	•	•	•	•	•														
4	4,95																			
6	3,3																			
10	1,91																			
16	1,21																			
25	0,78																			
35	0,554																			
50	0,386																			
70	0,272																			
95	0,206																			
120	0,161																			
150	0,129																			
185	0,106																			
240	0,0801																			
300	0,0641																			
400	0,0486																			
500	0,0384																			
630	0,0287																			
800	-																			
1000	-																			
1200	-																			
1400	-																			
1600	-																			
1800	-																			
2000	-																			
2500	-																			

Para todos os produtos abrangidos por este PEP, a massa (kg / km) de cada produto e o número de condutores ativos * no cabo são mencionados na ficha técnica, que pode ser obtida no link abaixo:

 $\underline{https://www.nexans.pt/pt/products/Construction/Industrial/Standard-Cables/RETFLEX-FO-75750.html}$

*Número de condutores ativos = número total de condutores - neutro (se aplicável). Se não houver condutor neutro no cabo, o número de condutores ativos = número total de condutores. A folha de dados indica se há ou não um condutor neutro em um cabo específico.

